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The objective of this work is to apply artificial neural networks for solving inverse problems
in the structural optimization of a fiber optic pressure sensor. For the sensor under investigation
to achieve a desired accuracy, the change in the distance between the tips of the two fibers due
to the applied pressure should not interfere with the phase change due to the change in the
density of the air between the two fibers. Therefore, accurate dynamic analysis and structural
optimization of the sensor is essential to ensure the accuracy of the measurements provided by
the sensor. To this end, a normal mode analysis and a transient response analysis of the sensor
were performed by combining commercial finite element analysis package, MSC/NASTRAN,
and MATLAB. Furthermore, a parametric study on the design of the sensor was performed to
minimize the size of the sensor while fulfilling a number of constraints. In performing the
parametric study, the need for a relationship between the design parameters and the response of
the sensor was fulfilled by using a neural network. The whole process of the dynamic analysis
using commercial finite element analysis package and the parameter optimization of the sensor
were automated within the MATLAB environment.
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1. Introduction

Optical fiber sensors have advantages over con-
ventional sensor in many aspects such as higher
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spatial and temporal resolution, the immunity to
electromagnetic interference, lightweight, small
size, easy multiplex capability, and large band-
width. Due to their superior qualities in many
aspects, they have many applicable areas includ-
ing strain measurements, pressure measurements,
structural health monitoring, rotation sensing,
chemical/biomedical sensors, and etc. The gener-
al use and the development of fiber optic sensors
have been reviewed by Kersey (1996). The use of
fiber optic sensors in electrical field has been
recently reviewed by Lee (2003). The feasibility
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of using fiber optic sensors for biosensor has been
investigated by number of researchers (Yang et
al., 2003 ; Kaufman et al., 2003). Yang et al.
proved the biocompatibility of a fiber optic micro
pressure sensor which can be used for in-vivo
human application. Successful applications of
fiber optic sensors toward structural health moni-
toring have been reported by number of resear-
chers as well (Li et al., 2004 ; Leung et al., 2005).
There also has been a unique application of fiber
optic pressure sensor toward a biomedical device
such as the construction of a smart bed (Spillman
et al., 2004 ; Li et al., 2004).

The capability of NNs has been utilized in
various design optimization problems by many
researchers. Mukherjee and Deshpande (1995)
combined NNs with rule-based expert system
(RBES) approaches to overcome the shortcom-
ings of RBES ; Namely, that the RBES lacks a
learning capability and that the rules need to be
stated explicitly. They used a mathematical opti-
mization model to generate the training set and
the testing set for NNs. Jayatheertha et al. (1996)
applied a simulated annealing process in their
approach in optimizing the configuration of a
laminated composite plate. Simulated annealing
is a statistical training method and resembles the
annealing of a metal. Park et al.(2003) used a
neural network to predict life cycle assessment.
Kim et al.(2004) used a neural network in ship
hull plate classification to predict cost for a pre-
liminary ship design. Cho et al.(2004) used a
neural network to improve both maneuverability
and durability of tire. They used a back-propaga-
tion neural network model for faster approxi-
mations of the objective functions using finite
difference scheme. Lee et al.(2004) used a neural
network in the design process of stereolitho-
graphy.

Ramasamy et al.(1996) used a feed-forward
backpropagation neural network in an expert
system and compared the optimization results
with those of the genetic algorithm in designing
a truss roof system. Rai et al.(2000) started the
design process with the initial condition from the
reference design and used a sequence of response
surfaces based on both neural networks and poly-

nomial fits in traversing the design space to find
an optimal dimension of an airfoil.

Nikolaidis et al.(2000) used NNs and response
surface polynomials to rapidly predict the per-
formance characteristics of an automotive joint
given the component dimensions. They found that
the performance of NNs and the response sur-
face polynomials are very similar to each other.
Kaveh et al.(2001) used feed-forward backpro-
pagation NN to predict the maximum deflection
and the weight in the design of double layer grids
for minimum weight. They used a data ordering
method to reduce the nonlinearity of the data and
to increase the speed of the training.

Greenman et al.(2002) combined a bootstrap
technique that estimates network generalization
performance with stochastic and deterministic
optimization techniques in adjusting the inter-
connection geometry of NNs to optimize a NN
that models a multi-element airfoil with small
training data sets. Hadi (2003) used NNs in opti-
mizing a concrete beam for weight and cost with
strength and serviceability constraints by storing
many optimum designs and training a neural
network for the stored design. They also used this
approach in optimizing the design of fiber rein-
forced concrete beams. Ha et al.(2004) used a
neural network to model uncertain factors.

The most important features that were utilized
from NNs in most design processes listed above
were the NNs’ superior generalization quality that
is capable of extracting significant information
from a massive set of data, and the ability to cope
with the ill-defined problems. One of the main
problems in applying NNs for engineering opti-
mization problems is that the process of obtain-
ing the solution for different design parameters is
done manually and preparing the data to train
NN’ takes a great amount of CPU time. In this
work, this problem has been solved by autom-
ating the whole optimization process including
solving the direct and inverse problems.

In constructing response surface for the opti-
mization process, the most commonly used neural
network structure, the multi-layer feed-forward
backpropagation neural network as shown in
Fig. 1 was used. The hidden neurons are trans-
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ferred sums of weighted inputs p with added
bias, and the outputs { of the network are trans-
ferred sums of weighted hidden neuron values
a with added bias. A sigmoid function was used
in hidden layers and a linear function was used
in the output layer in our case. The relationship
between input and output of a NN is shown in
Eq. (1).

<
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(1)
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where w is weight and f is a transfer function
(Haykin 1998, Hagan et al., 1996).

The subject of this paper is a miniature fiber
optic pressure sensor, being manufactured by Lu-
na Innovations Inc, Blacksburg, VA, USA and
made of a silicon base and two optical fibers
mounted in V-grooves of the base. See Fig. 2.
When the air pressure between the two fibers is
changed, the density of the air is changed and this

Fig. 1 Multil-layer feed-forward backpropagation

neural network with a sigmoid transfer func-
tion for the hidden layer and linear transfer
funciton for the output layer. (p=inputs, a=
hidden neurons, w=weights, b=bias, f=
transfer function, n=number of inputs, r=
number of hidden neurons, s=number of
output neurons, t=outputs)

Optical Fibers

Silicon Base

(a) Fiber optic pressure sensor

change results in a phase change of the light
passing through the fiber that is reflected from the
surface of the gap between the two fibers. For the
sensor to be able to achieve a desired accuracy,
the change in the distance between the two fibers
due to the pressure change should not interfere
with the phase change due to the change in the
density of the air between the two fibers. There-
fore, accurate dynamic analysis of the sensor is
essential to ensure the accuracy of the measure-
ment made by the sensor

Here, the normal mode analysis and the transi-
ent response analysis of the sensor were per-
formed using commercially available packages,
MSC/PATRAN and MSC/NASTRAN. Further-
more, a parametric study on the design of the
sensor was performed to minimize the size of the
sensor while fulfilling a number of constraints. In
performing the parametric study, the need for a
relationship between the design parameters and
the response of the sensor was achieved by using
artificial neural network (NN) instead of calcu-
lating the response of the sensor for all the possi-
ble variation of the parameters. A feed-forward
back-propagation NN was trained to map the
relation between the design parameters and the
response of the sensor. The gradient-based opti-
mization method of MATLAB was used to per-
form the optimization using NN.

2. Finite Element Modeling
of the Sensor

The miniature fiber-optic sensor analyzed here
is a sensor which is used to accurately measure the
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(b) Light paths near the gap area

Fig. 2 Geometric drawing of the miniature fiber- optic pressure sensor and the light paths around the gap area
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pressure change in the air by utilizing the phase
change in the optical fiber used in the fiber optic
sensor. Figure 2(a) shows the geometric drawing
of the sensor and Fig. 2(b) shows the detailed
drawing around the gap area of the sensor dis-
playing two light paths in the optical fiber that
reflects from two surfaces. The change in the
phase difference between two light paths occurs as
a result of the change in the air density in the gap
area due to pressure changes in the air surround-
ing the fiber. This change is measured to accura-
tely determine the pressure change. However, the
structural vibration can also result in a change in
the phase difference. Therefore, structural analy-
sis and design optimization is essential to mini-
mize the interference between the structural vi-
bration of the sensor and air density changes.

A three-dimensional finite element model was
used to analyze and optimize the miniature fiber
optic sensor. This model represents one quarter
of the sensor that represents the whole model
by employing two planes of symmetry. Figure 3
shows the full finite element model and one
quarter of the finite element model. The quarter

model is represented using a hexagonal finite

(a) The FEM model for the whole sensor

element that has 20 nodes. The model has 4,593
nodes and 838 elements, and has 13,677 degrees of
freedom. In the quarter model, the boundary
conditions at the bottom only allow sliding dis-
placements on the bottom plane and the boundary
conditions at the side that faces symmetric half
only allow sliding displacements on the plane of
the side.

2.1 Normal mode analysis

A modal analysis was performed to obtain the
natural frequencies and the modal displacement
vector of the sensor. The calculation was done
using the MSC/NASTRAN normal mode solver.
In studying the normal modes of the sensor, two
kinds of boundary conditions were considered.
One was a sliding bottom boundary condition
and the other was a fixed bottom boundary con-
dition.

The mode shapes for each case were also stu-
died to find the modes that can affect the dis-
placements of the fiber at the gap. For the sliding
boundary condition, the 3" mode and the 7
mode were found to have the most influence on
the displacement at the gap area. Figure 4 shows

¢

(b) The quarter model

Fig. 3 Finite Element Model of the miniature fiber- optic sensor

(a) 3™ mode

Fig. 4 The mode shapes of the sensor with sliding bottom boundary condition

(b) 7* mode
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(a) 2™ mode

(b) 8™ mode

Fig. 5 The mode shapes of the sensor with fixed bottom boundary condition
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Fig. 6 Pressure Time-history approximated from
experimental data

these two modes. For the fixed bottom condition,
the 2™ and the 8™ modes were found to be most
influential on the response of the sensor, as shown
in Fig. 5.

2.2 Transient response analysis using direct

method

A transient response analysis was performed
using a transient input that was obtained from an
experiment. The approximate experimental pres-
sure profile used here consists of a pressure rise to
70 psi in 20 microseconds, and the trailing edge is
approximated by a line from #=0.008 sec and p=
70 psi to £=0.02 sec and p=0 psi. This pressure
profile is shown in Fig. 6.

The transient response was calculated using
NASTRAN’s direct time-integration method with
a sliding bottom boundary condition. Figure 7
shows the time history of the displacement of the
gap. The analysis was performed only for a short
duration of time that includes the pressure rise
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Fig. 7 Calculated time history of the displacements
at the tip of the fiber, obtained using NAS-
TRAN
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Fig. 8 FFT of the response at the tip of the sensor

because of the available computational resources.
The Fast Fourier Transform (FFT) of the time
history of the gap displacement was obtained.
See Fig. 8. The small peaks are at 0.808 MHz and
2.13 MHz which correspond to the 3" and 7
modes, respectively.
A functional form of a pressure profile shown
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in Fig. 9 and given by
o) =p—ps (= )(1==) et @

where { denotes time, p, ambient pressure, ps
peak negative phase, and 7~ the duration of the
negative pressure phase (Baker 1973) was used as
the pressure profile in most of the cases in this
research, because this includes both the positive
and negative phases of the pressure profile.

The modal analysis capability in NASTRAN
was used to approximate the transient response.
For the fixed bottom boundary condition, we
retained fifty modes. The time step for integrating
the modal equations was selected to be one-tenth
of the time for a wave to traverse the thickness
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Fig. 9 Time history of the pressure profile including
the phase in which pressure turns into suction
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Fig. 10 Time history of the gap change obtained
with NASTRAN’s direct method

of the base. We compared the modal method to
the direct method of integration. Figure 10 shows
the time history of the change in the gap size
obtained using a direct time integration scheme.

Next, an FFT analysis was performed on the
time history of the gap displacement of the sensor.
Figure 11 shows the FFT of the output divided
by the FFT of the input. Here, the highest peak
for the modal case was found to be at the 2" and
the 8™ modes. In Figure 11, we can find that the
results from the direct method correspond to the
high peaks of the modal method results.

The transient response calculation using the
direct method in NASTRAN took a relatively
long period of time, and required a large amount
of disk space. In the current case, which uses the
three-dimensional FEM model and 1000 time
steps, the calculation took about one-half hour
and required about 1GB of disk space. Therefore,
we needed to have a method that could speed up
the calculation and require much less disk space
to perform a parametric study, because a parame-
tric study requires repeated calculations of the
transient response for different design parameters.
The modal methods explained in the next section,
was employed to overcome this problem of exces-
sive CPU time and storage requirements.

2.3 Transient response analysis using modal
methods

Any forced motion of a linear Multi-Degree-

Of-Freedom (MDOF) system may be expressed

in terms of forced modal vibrations. We first used
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Fig. 11 FFT of Output divided by FFT of Input
using the Modal superposition method
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the classic modal superposition method. The dy-
namic equation for a case of Multi-Degree-of-
Freedom (MDOF) systems can be expressed as

Mii+Ku=p(¢#) (3)

where M is the mass matrix, K is the stiffness
matrix, u is the displacement vector, and p is the
forced input. Here, the effect of damping of the
structure was not considered.

The first step in a modal superposition method
is to obtain natural frequencies and normal
modes of the system. The natural frequencies and
modes satisfy

(K—w?M) ¢,=0 (4)

The modes can be collected to form the so-called
modal matrix

O=[¢ ¢ ] (5)

The coordinate transformation that relates the
displacement vector and the modal displacement
vector is

N

u(t>:d)77(t>:2 ¢r77r<t> (6)

7=1

The reduced dynamic equation can be expressed
in terms of the modal displacement vector as

Mij+Ky=p(t) (7)
where the modal mass matrix is calculated as M=
O'M®, the modal stiffness matrix K=0'KQ,
and the modal force vector p=@‘p. The com-
ponents of the modal displacement vector % can
be obtained by solving the equations indepen-
dently since the modal mass and stiffness matrices
have diagonal form.

The modal acceleration method can account
for the effects of higher modes in the modal
analysis with a small number of modes (Craig
1981). Therefore, the modal acceleration method
has many advantages over the modal superposi-
tion method including the improved convergence
properties and more accurate results with a
smaller number of modes. The dynamic equation
for MDOF system shown in Eq. (3) can be ex-
pressed as:

u=K"'(p—Mii) (8)

N
u:K‘lp—K‘er1 MO, %, (9)

p

L liv1 4
Fig. 12 Piecewise linear approximation of the forced
input. This allows us to use exact integration
between {; and f;1

The solution of Eq. (9) can be obtained by
solving for the modal acceleration vector % from
Eq. (7).

A piecewise linear approximation of applied
force, as shown in Fig. 12, was utilized in solving
the independent equations (7). The exact solution
of the equation below was used in piecewise
fashion to obtain % and %.

Mi+Kyp=at+b, t:<t<tm

p(t) =9, (10)

Ui ( fi) =17;
The use of the modal method to approximate the
transient response permitted a much larger num-
ber of time steps within the available computa-
tional resources. The transient response was cal-
culated using the modal superposition method in
MATLAB based on normal modes extracted from
NASTRAN. The results of the modal superposi-
tion method were close to those of the NAS-
TRAN modal method when the same numbers of
modes were used as can be seen in Fig 13(a). As
the number of modes increased, the results from
modal superposition were close to those of NAS-
TRAN’s direct method as shown in Fig. 13(b).

Next, the transient response was calculated
using the modal acceleration method. As can be
seen in Fig. 14, the results of the modal accelerat-
ion method were close to those of the NASTRAN
direct method even when a small number of
modes were used.

The advantage of the modal acceleration meth-
od is that it saves considerable CPU time com-
pared to the CPU time required by the direct
method used in NASTRAN. Table 1 shows the
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Table 1 The comparison of CPU time for calculating the transient response with different methods

Method NASTRAN NASTRAN Modal Mode Superposition Mode Acceleration
Direct (50 modes) (50 modes) (10 modes)
Time 6m 20s ImO02s 39 sec 10 sec
Relative 38 6 4 1

2

NASTRAN (Modal, 30 modas)
Mode Superposition (30 modes)
15 |4

» Mode Superposition (50 modes)
5 NASTRAN (Modal, 50 modes)
1 X \
v NASTRAN (Modal, 10 modes)

Mode Superposition (10 modes) |

(Dynamic Disp.)/(Static Disp.)

-
0. AT KO T SRR R AR
oW Wesn e a0 T a0
05

Time (u sec)
(a) Comparison of Mode superposition method so-
lutions using MATLAB with NASTRAN modal

solution

2

ﬁ\ Mode Superposition with 30 modes
15 | 1
\

Magtran Direct Method

Mode S

with 50 modes

Mode Superposition with 40 modes

Mode Superposition with 20 modes

(Dynamic Disp.)J(Static Disp.)

Mode Supempasition with 10 modes
-0.5 ¢

Time (u sec)
(b) Comparison of Mode superposition method so-
lutions using MATLAB with NASTRAN direct
method solution

Fig. 13 Time history of the gap displacement using modal superposition method

- Modal Acceleration (Piecewise Linear, 10 modes)

1 . Modal Acceleration (Piecewise Linear, 30 modes)
—— NASTRAN (Direct)

(Dynamic Disp.)/(Static Disp.)

Time (u sec)

Fig. 14 Time history of the change in the length of
gap obtained with the modal acceleration
method and the NASTRAN direct method.
The two sets of results are in good agreement

comparison of CPU time using a Sun Blade 1000
Workstation when normal mode and static dis-
placement calculations were given. Also, the ad-
vantage of the modal acceleration method over
the modal superposition method is found to be
that the former requires a lesser number of modes
to be extracted, thus saving time.

3. Structural optimization

The objective in this design study is to mini-

mize the size and the weight of the sensor which
can sustain a 50,000 psi pressure wave. The design
constraints are that the fundamental frequency in
the axial direction should be greater than 1 MHz
and that the structural displacement at the gap
should be less than 1 nm. Also, the design has to
prevent silicon failure and prevent fiber rebound
failure. The fixed values in this design are the
fiber diameter (124 mm), gap length (100 mm),
V-groove etch angle (54.7°), and bond length
(larger than 2 mm).

Therefore the design parameters are to be the
size of the silicon base (height, width, and depth
(H, W, D)), the size of the rectangular shaped
groove (width and depth (Wg, Dg)), the depth of
the V-groove (Dv), and the exposed length of the
fiber (Lf). From the design constraints, the relat-
ed geometrical constraints were found to be

H>Dg>Dv>169.3 mm,
|[Wg—Lf|>100 mm

In performing a parametric design study on the
sensor, the MATLAB code that can connect the
input and output of NASTRAN to the MATLAB
environment was used.

The steps followed in this parametric study are
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as follows.

The first step in performing the parametric
study on the design of the sensor was to obtain the
response of the sensor for different dimensions of
the sensor. A MATLAB code was used to au-
tomatically generate input files for NASTRAN
with different dimensions of the sensor. Next, a
NN was trained for the set of the dimension of the
sensor and the calculated response of the sensor
such that for a given dimension of the sensor, the
NN can output the response of the sensor. The
trained NN was tested with an unseen set of data
for verification. In the next step, a gradient based
optimization was performed on the input and
output mapping of the trained NN. The objective
was minimizing the overall volume of the sensor.
The constraints were the minimum of 1 MHz
natural frequency and the maximum of 1n
m displacement at the gap. The calculations of the
constraints were performed quickly using the
trained NN. The constrained nonlinear multi-
variable optimization function in the optimiza-
tion toolbox of MATLAB was used to find the
optimal dimensions of the sensor.

The overall step is shown as a flow chart in
Fig. 15. This whole process involving NAS-
TRAN analysis was performed automatically in
the MATLAB environment.

~
Generate  Input  Files  for
NASTRAN in MATLAR
Exceute  NASTRAN analysis
Change from MATLAB ﬁ
Design v
P Train MNs for the design
Read Modal Stiffness snd Modal | parameters and the response ‘
Veetwors from NASTRAN outpul
file *
* Test MNs with unseen testing
~ : = data set for verification
Calculate transient response using
Madal Acceleration Method 3
Find the optimal parameters
in the NN desian space
Mo Data Set Yes
Enough?, =
Fig. 15 The procedure in the parametric study of

the design of the sensor. The ability to run
NASTRAN from MATLAB without any
human intervention greatly facilitated the
data generation for training Neural Net-

works

The responses of the sensor calculated for each
set of dimensions were the first natural frequency
and the peak displacement at the gap when 50,000
psi peak pressure was applied at the top of the
sensor in the functional form shown in Fig. 9.
Multi-layer feed-forward back-propagation NNs
were used with a resilient backpropagation learn-
ing scheme (Demuth et al., 2000).

First, the response of the sensor was obtained
varying the width between 2.1 mm and 2.9 mm,
length between 2.4 mm and 2.6 mm, and height
between 0.4 mm and 1.2 mm using a step size of
0.1 mm. The design that fulfills exact constraints,
which are 1 MHz natural frequency and 1 nm of
displacement, was not achieved. The optimization
that fulfilled some loose constraints, 1 MHz natu-
ral frequency and 100 nm displacement at the gap,
resulted in the dimensions 2.82 mm (W), 2.41 mm
(L), and 1.15mm (H).

The response of the sensor was obtained for a
broader range of dimensions. The width was vari-
ed between 2.5 mm and 3.5 mm, length between
2.3 mm and 3.5 mm, and height between 0.8 mm
and 2.0 mm. The optimization, which fulfilled
loose constraints | MHz frequency and a gap
displacement of 100 nm, resulted in the width
2.69 mm, length 2.3 mm, and height .15 mm. A
verification run of MATLAB and NASTRAN
resulted in 1.18 MHz natural frequency and 142
nm of displacement at the gap.

4. Conclusions

A miniature fiber optic sensor was analyzed for
its reliability against high peak pressure. More-
over, a parametric study was performed to obtain
optimal dimensions for the sensor. The normal
mode solution made sure the design of the sensor
was within the limit of the natural frequency. The
parametric study utilizing NASTRAN normal
mode analysis for the displacement constraints
and neural networks found the desired design
without the need for solving possible direct prob-
lem existing in the design space.

The first step in solving inverse problems is
finding the best information that will most effici-
ently identify the parameters that we are seeking.
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The first natural frequency and the maximum
deflection in transient analysis of a fiber optic
sensor were the constraints in solving the prob-
lem. The second step lies in finding the best struc-
ture and training method to employ NN to solve
the specific inverse problem. Multilayer Feed-
Forward Backpropagation NN which has 2 hid-
den layers that uses sigmoid transfer functions
for hidden layers and a linear transfer function
for output layer and employs a resilient backpro-
pagation training scheme was found to be most
efficient.

The code developed in the MATLAB environ-
ment that can automatically connect NASTRAN
solid FE analysis to MATLAB analysis made it
possible to generate enough training data for NN.
Moreover, this code has made it possible to use
highly complex NASTRAN structural models in
an analysis or a design process that involves NN
and other analyses like the modal superposition
method and Fast Fourier Transform analysis in
the MATLAB environment.
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